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Outline of the lecture
1. Carrier concentration
2. Determining Fermi level

Read Chapter 2 of the reference book (on moodle)
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Crystal structure: Definitions

Unit cell: Defines the symmetry and structure of the
entire lattice

Bravais lattices: describe the geometric arrangement of
the lattice points

a is the lattice constant.

Crystal structure and symmetry play a critical role in 
determining many physical properties, such as:
• Cleavage:

Check out this video: 
https://www.youtube.com/watch?v=IRoIXjxIcBQ

• Mechanical properties (elastic compliance, stiffness)
• Electronic band structure: Band gap
• Optical transparency
• Thermal properties
• Polarization fields

GaN: most common in wurtzite structure  

Zincblende structure: III-V compound semiconductors: 
GaAs, GaP, etc:
Important for optoelectronics and high-speed Ics

https://www.youtube.com/watch?v=IRoIXjxIcBQ
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How Energy Bands and Energy Gap are calculated?

Energy-momentum relationship: characterizes the band structure
• Important for the interactions with photons and phonons

Bloch function

Schrödinger’s equation:

are periodic in R in real space

Thus:

4
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How Energy Bands and Energy Gap are calculated?

Consequences:
• In 1D: only k = 2𝝿/L are allowed (where a is the real space period)
• E(k) is periodic in k-space: E(k) = E(k+G)
• It is sufficient to define k in a primitive cell, which is defined by the Brillouin zone: - 𝝿/a, 𝝿/a
• Entire band structures need only to be calculated within the brillouin zone. 5

In 1D – simple case
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In 3D - Reciprocal space

Defines the principal symmetry points :

Gamma  = (0; 0; 0) is the origin
X = (1; 0; 0) + 6 equivalent points, 
L = (1; 1; 1) + 8 equivalent points

The reciprocal lattice plays a fundamental role in most analytic studies
(properties related to momentum) of periodic structures:

• Energy-momentum relationship
• Theory of diffraction: X-Ray diffraction

Crystallographic Notation

Fundamental to define the band structure of a semiconductor

Real space
Reciprocal space



Ge Si

Energy band-gap

GaAs

Eg = 1.43 eV
Eg = 1.12 eV

Eg = 0.66 eV

Indirect band gap direct band gap 7

Reciprocal space directions:



Band diagram: We focus on minimum of the bands 
(quadratic region)

GaAs

What do we learn from band diagrams

What do we learn from it:

Energy-momentum relationship near band edges

1. Allowed and forbidden states
2. Group velocity: slope of the bands
3. Electron/hole mass: curvature of bands



Effective mass

Band diagram: We focus on minimum of the bands 
(quadratic region)

Effective mass in 1DGaAs

Energy-momentum relationship near 
band edges

Momentum

What do we learn from band diagrams

𝐸 𝑘 =
𝑝!

2𝑚∗ =
ℏ!𝑘!

2𝑚∗

𝑝 = ℏ 𝑘

ℏ = ℎ/2𝜋 : planck’s constant = 6.58 eV.s
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For example:
Si: m* = 1.09 m0
GaN: m* = 0.2 m0

GaAs: m* = 0.06 m0

𝑣𝑛 𝑘 = ℏ$
%∗= &

%∗

Group velocity:

𝑣𝑛 𝑘 = '
ℏ
∇$ 𝐸((𝑘)



Key questions 

• How many carriers are available for conduction?

• How can we increase and control the conductivity in semiconductors?
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A few important concepts

How many carriers are available for conduction?
We are interested in analyzing the minimum of the conduction and valence bands

Ec

Ev

Available electrons in the conduction band:

density of electrons Probability of occupation
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A few important concepts

What is the density of electrons gc(E)?

What law regulates the electron occupation of states f(E) as a 
function of energy and temperature?



Density of states

A few important concepts

Attention: this is the density of states for a 3D system. 2D, 1D and 0D systems have different energy dependencies
14



Density of states

A few important concepts
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Electron statistics

At finite temperature, state occupation probability by electron determined by Fermi-Dirac distribution 
function:

EF: Fermi energy -energy for which occupation probability is 50% 
k: Boltzmann constant = 8.62x 10-5 eV/K 
kT -thermal energy = 25.9meV at 300 K

A few important concepts
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Notion of thermal equilibrium

A particle system is in thermal equilibrium (TE) if:
• it is closed: no energy flows through boundaries of system
• it is in steady-state: time derivatives of all ensemble averages (global and local) are zero

Thermal equilibrium important because all systems evolve towards TE after having been perturbed.

In thermal equilibrium, EF constant throughout system

A few important concepts
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Carrier concentration

How to calculate the carrier concentration? (which is related to the current)

X

Density of states Probability of a state to be occupied

Integrated for all energies



1. What is a simplified expression for the number of electrons n and holes p?

2. What is the position of the Fermi level?

3. What is the np product?

Questions

19



Carrier concentration



Carrier concentration

Non-degenerate Semiconductors. By definition, in non-degenerate semiconductors, the doping
concentrations are smaller than Nc and the Fermi levels are more than several kT below Ec, the Fermi-
Dirac integral approaches:

21

where



Carrier concentration

gc(E) f(E) n0

Intrinsic semiconductor (undoped)

no ≡ equilibrium (free) electron concentration in conduction band [cm−3]
po ≡ equilibrium hole concentration in valence band [cm−3] 

In intrinsic semiconductors:
no = po = ni ni ≡ intrinsic carrier concentration [cm−3]
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Carrier concentration

Intrinsic semiconductor (undoped)

no = po = ni
ni ≡ intrinsic carrier concentration [cm−3]
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A second important result:

First important result:

Equilibrium np product in a semiconductor at a certain temperature 
is a constant specific to the semiconductor.

Silicon



Carrier concentration
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Non degenerate degenerate



Carrier concentration
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Summary of carrier statistics depending on EF location

Carrier concentration

14

Summary of carrier statistics depending on EF location



Carrier concentration
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Summary of carrier statistics depending on EF location

If EF is inside bandgap:

For a given semiconductor, nopo depends only on T and is independent of precise location 
of EF . But only if semiconductor is non-degenerate.



Carrier concentration

27

In intrinsic semiconductor, no = po and usually fairly small ⇒semiconductor non-degenerate. 
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Key conclusions

In solids, electron states cluster in bands separated by bandgaps.

Band structure:
• Depends on the atomic and crystal structure
• Dependent on the momentum of electrons
• Band gaps can be direct or indirect

E(k) is periodic in k-space: E(k) = E(k+G)

Entire band structures need only to be calculated within the brillouin zone.

Order of magnitude of key parameters:

– Atomic density of Si: n∼ 5×1022 cm−3

– Bandgaps at 300K Si: Eg = 1.12 eV
GaAs: Eg = 1.43 eV
GaN: Eg = 3.39 eV

thermal energy: kT ∼26 meV @300K

28
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Key conclusions

Distinct feature of semiconductors: at 0 K, quantum state filling ends up with full band separated from
next empty band by ~1-3eV bandgap at around 300 K, some electrons populate next band above
bandgap.

System in thermal equilibrium:
• isolated from outside world and in steady state.
• In thermal equilibrium, EF is independent of position: it is constant!

Occupation probability of quantum systems in thermal equilibrium governed by Fermi-Dirac
distribution function:

Density of states give us the number of states per volume available at a give energy

29

In 3D:
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Key conclusions
Non-degenerate semiconductor: 

Intrinsic semiconductor: ideally pure semiconductor. 

In non-degenerate semiconductor nopo



Appendix – Supplementary Material



Notation Interpretation
( h k l ) crystal plane
{ h k l } equivalent planes
[ h k l ] crystal direction
< h k l > equivalent directions

h: inverse x-intercept of plane
k: inverse y-intercept of plane
l: inverse z-intercept of plane

(Intercept values are in multiples of the lattice constant;
h, k and l are reduced to 3 integers having the same ratio.)

Miller Indices:

Crystallographic Notation

** Wurtzite materials have an hexagonal crystal structure: 
4 Miller indices are used to represent it more easily (see appendix for more information)
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Real space or direct space (represented by Miller indices)

Reciprocal space is also called Fourier space, k- space, or momentum space

The reciprocal lattice plays a fundamental role in most analytic studies
(properties related to momentum) of periodic structures:

• Energy-momentum relationship
• Theory of diffraction: X-Ray diffraction

This is not covered in this course (solid-state physics classes will cover
this in details)

Reciprocal lattice vector: 

for which:

Crystallographic Notation
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Reciprocal space is also called Fourier space, k- space, or momentum space

Crystallographic Notation

For instance, X-ray diffraction reveals the reciprocal space
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Interesting video: https://www.youtube.com/watch?v=DFFU39A3fPY
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Electronic structure of semiconductors

Electron statistics

Approximation


