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EE-557
Semiconductor devices |

Génie Electrique et Electronique
Master program

Prof. Elison Matioli Doping and carrier concentration

Outline of the lecture
1. Carrier concentration
2. Determining Fermi level

Read Chapter 2 of the reference book (on moodle)

References:

® ). A. del Alamo, course materials for 6.720)J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/)



Crystal structure: Definitions

Unit cell: Defines the symmetry and structure of the
entire lattice

- - e

Bravais lattices: describe the geometric arrangement of
the lattice points

Simple cubic Body-centered cubic Face-centered cubic
(Po) (Na, W, etc.) (Al, Au, etc.)
. . (a) (b) (c)
a is the lattice constant.

Crystal structure and symmetry play a critical role in
determining many physical properties, such as:
* Cleavage:
Check out this video:
https://www.youtube.com/watch?v=IRolXjxIcBQ
* Mechanical properties (elastic compliance, stiffness) A O
* Electronic band structure: Band gap (Si, Ge, C, etc.) (GaAs, GaP, etc.)
« Optical transparency @ ©
* Thermal properties
* Polarization fields
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Rock-salt Wurtzite
(PbS, PbTe, etc.) (CdS, ZnS, etc.)

6] (®

GaN: most common in wurtzite structure

Zincblende structure: IlI-V compound semiconductors:
GaAs, GaP, etc:
Important for optoelectronics and high-speed Ics



https://www.youtube.com/watch?v=IRoIXjxIcBQ

How Energy Bands and Energy Gap are calculated? =Pr-L

Energy-momentum relationship: characterizes the band structure
* Important for the interactions with photons and phonons

2
Schrodinger’s equation: [— 2h -V2 + V(r)] wr, k) = E(k)y(r, k)
m

Bloch function w(r, k) = exp(jk-r)Uy(r, k)

y(r,k) and Uy(rk) are periodicin R in real space

Thus:

w(r+R, k) = exp[jk-(r+R)]U,(r+R, k)

exp(k - r)exp(jk - R)U,(r, k)

k * R 1s a multiple of 2.



How Energy Bands and Energy Gap are calculated? =Pr-L

In 1D — simple case

Consequences:
* In1D:only k=2m/L are allowed (where a is the real space period)
* E(k)is periodic in k-space: E(k) = E(k+G)
* ltis sufficient to define k in a primitive cell, which is defined by the Brillouin zone: - m/a, /a
e Entire band structures need only to be calculated within the brillouin zone. 5



Crystallographic Notation E PF L

In 3D - Reciprocal space

Defines the principal symmetry points :

Gamma = (0; 0; 0) is the origin
X =(1; 0; 0) + 6 equivalent points,
L=(1; 1; 1) + 8 equivalent points
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Tetrahedron Diamond
(Si, Ge, C, etc.)
Real space _
Reciprocal space »
Fundamental to define the band structure of a semiconductor
-3

The reciprocal lattice plays a fundamental role in most analytic studies
(properties related to momentum) of periodic structures: “‘L o F [100] X

WAVE VECTOR

* Energy-momentum relationship
* Theory of diffraction: X-Ray diffraction



Energy band-gap EPFL

Ge GaAs

Reciprocal space directions:
: Ge
- 4|

sy, 1
L e

2F
g .
> 1 b - | LOWER
CORN £q VALLEY
& F LIGHT AND E;=1.12eV ;
] o €9 HEAVY HOLES | ¥ E=143ev
E,=0.66 eV Sese
B /

L[] o [100) X L[ r (100] X L) r (100] X
WAVE VECTOR

Indirect band gap direct band gap 7



What do we learn from band diagrams E PFL

Band diagram: We focus on minimum of the bands
(quadratic region)

GaAs
Energy
300K E,=142¢V
i, Lo
x =1
;l{e} E, =034 eV
Ex
<1[]23 <111> What do we learn from it:
Wave vector c . \ationsh band ed
£ Heavy holes nergy-momentum relationship near band edges
50 ‘
| Light hotes
I\ 1. Allowed and forbidden states
Split-off band 2. Group velocity: slope of the bands

3. Electron/hole mass: curvature of bands



What do we learn from band diagrams

Effective

mass

Band diagram: We focus on minimum of the bands
(quadratic region)

GaAs

X-valley

Energy

C-valley

300K E,=142¢V

R

Light hotes

Split-off band

Er=171eV
Ex =190eV
;lle) Eoo =034 eV
<|11>
Wave vector
Heavy holes

=PrL

Energy-momentum relationship near
band edges
p2 h2k2

E — —
(k) 2m* 2m*

Effective mass in 1D

O°E.
mj = h2 2J
8ky

h=h/2m : planck’s constant = 6.58 eV.s

For example:
Si:m*=1.09 m,
GaN: m"=0.2 mg
GaAs: m" =0.06 m,

Group velocity:
1
vn(k) — ?l Vk En(k)

hk p
m* m*

vn(k) =

|l
=
=~
©

Momentum p



Key questions EPFL

 How many carriers are available for conduction?

* How can we increase and control the conductivity in semiconductors?

11



A few important concepts

=PrL

How many carriers are available for conduction?
We are interested in analyzing the minimum of the conduction and valence bands

Energy
A 300K

C-valley

L-valley

<1 00¢> r <|11> -
Wave vector
Eqo Heavy holes

Light holes

ZTN

4 | Ec

: ; Ev

Available electrons in the conduction band:

Split-off band

\

no = [g. gc(E ) f[(E)dE

\
density of electrons Probability of occupation



A few important concepts E PF L

What is the density of electrons g.(E)?

What law regulates the electron occupation of states f(E) as a
function of energy and temperature?

No = /E): g((E) f(E) ad

13



A few important concepts E PF L

Density of states

-

a(E) /1
9c(E)

LY N
he -,__-_’....‘-‘r'-i — . o
A STl 00, RO B e aiia e

J >
E
9.(E) = 4 ( E>E,
x \ 3/2
g,(E) = 4x (2’;’;’*) E_E E<E,

m;;, = density of states electron effective mass
myy;, = density of states hole effective mass

14
Attention: this is the density of states for a 3D system. 2D, 1D and 0D systems have different energy dependencies



A few important concepts E PF L

Density of states



A few important concepts E PF L

Electron statistics

At finite temperature, state occupation probability by electron determined by Fermi-Dirac distribution
function:

O.; T~ N\
08 | N
— AN
0.7
1 0.6 |

M
0.4
03 I T=1000 K

0.2 |
: \300
0.1 |

1 \10‘0\ \

0 I ] 1 ] 1 y _— —— . \'h
-04 -03 -02 -01 0 0.1 0.2 0.3 0.4

E-Ef (eV)

Er: Fermi energy -energy for which occupation probability is 50%
k: Boltzmann constant = 8.62x 10 eV/K
kT -thermal energy = 25.9meV at 300 K

16



A few important concepts E PF L

Notion of thermal equilibrium

A particle system is in thermal equilibrium (TE) if:
* itis closed: no energy flows through boundaries of system
e itisin steady-state: time derivatives of all ensemble averages (global and local) are zero

Thermal equilibrium important because all systems evolve towards TE after having been perturbed.

In thermal equilibrium, E; constant throughout system

high energy states occupied

low energy states empty

17



Carrier concentration E PF L

How to calculate the carrier concentration? (which is related to the current)

Density of states Probability of a state to be occupied
. om;,\ >/ 1
g:(E) —47‘( h’d ) F—-E. | E>E, X f(E) E
I +exp J

mg, = (mimim3)'

Integrated for all energies

= [ 9dE) f(B)dE

18




Questions E PFL

1. What is a simplified expression for the number of electrons n and holes p?
2. What is the position of the Fermi level?

3. What is the np product?

19



Carrier concentration E P F L



Carrier concentration

10

W= N2 F (EF;EC)
- C 1/2
Iz kT -
X
e Noma 2T
where C 52 ;g? e
F
&

102

,.OO

[(E~EC)/kT]'? dE
1 + exp[(E-Ep)/kT]kT
JE,

r.(I)

Ep-E¢
FI/Z(T) =Fp(ngp) =

pl’2
A 1 +exp(n-1ng)

1073

dn

Non-degenerate Semiconductors. By definition,

T
-
1

(J7/2) exp (1) e

‘\\‘ 7 /
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"N

74
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,71/2d,7
I +exp(n-1np)

Fl/z(ﬂp)zf
0

|

in non-degenerate semiconductors,

-2 0 2 4 6
(Ep—Ec)kT = np

the doping

concentrations are smaller than Nc and the Fermi levels are more than several kT below Ec, the Fermi-

Dirac integral approaches:

N

F (’iff;f_g)__ﬁ_
2\ T =75 eXp| —

E.-E
kT

21



Carrier concentration

Intrinsic semiconductor (undoped)

n, = equilibrium (free) electron concentration in conduction band [cm™3]
P, = equilibrium hole concentration in valence band [cm™3]

Conduction
band

Valence

g.(E)

In intrinsic semiconductors:
N, = Po = Ni

n; = intrinsic carrier concentration [cm™3]

=PrL

(a)

22



Carrier concentration E PF L

Intrinsic semiconductor (undoped)

300 K
First important result: 1E+15 —$ :
. Silicon
n, = p, = Ni 1E+10 '-.h_
n; = intrinsic carrier concentration [cm~3] - .
1E+05 %
— ]
?_ 1E+00 .
£ .
. = 1E-05 =
A second important result: |
.2 1E-10 0.612eV =
NoPo = N;
1E-15
L T T e
30 50 70 90 110 130 150

1/KT (eV)

Equilibrium np product in a semiconductor at a certain temperature
is a constant specific to the semiconductor.

23



Carrier concentration E PF L

I(E)

f(E)

Non degenerate degenerate

24



Carrier concentration

=PrFL

Summary of carrier statistics depending on E; location

™
Iog n o, p o
Ny 4 -
_ Fermi-Dirac for electrons
NC Maxwell-Boltzmann for holes
Ec <
Maxwell-Boltzmann for electrons
Maxwell-Boltzmann for holes
Ey 4
T Maxwell-Boltzmann for electrons
Fermi-Dirac for holes
}
EF

14



Carrier concentration E PF L

Summary of carrier statistics depending on E; location

nOpO 1

7

ni2_____l = =

If Ef is inside bandgap:

00—

For a given semiconductor, n,p, depends only on T and is independent of precise location
of EF . But only if semiconductor is non-degenerate. 26



Carrier concentration E PF L

In intrinsic semiconductor, n, = p, and usually fairly small =semiconductor non-degenerate.

ni = /MoPo = VNN, exp — Qf%

27



Key conclusions E P F L

In solids, electron states cluster in bands separated by bandgaps.
Band structure:

* Depends on the atomic and crystal structure

* Dependent on the momentum of electrons

e Band gaps can be direct or indirect

E(k) is periodic in k-space: E(k) = E(k+G)

Entire band structures need only to be calculated within the brillouin zone.

Order of magnitude of key parameters:

— Atomic density of Si: n ~ 5x1022¢cm™3

— Bandgaps at 300K  Si: E,=1.12eV
GaAs: E,=1.43 eV
GaN: E;=3.39eV

thermal energy: kT ~26 meV @300K



Key conclusions E P F L

Distinct feature of semiconductors: at 0 K, quantum state filling ends up with full band separated from
next empty band by ~1-3eV bandgap at around 300 K, some electrons populate next band above
bandgap.

System in thermal equilibrium:
* isolated from outside world and in steady state.
* Inthermal equilibrium, E;is independent of position: it is constant!

Occupation probability of quantum systems in thermal equilibrium governed by Fermi-Dirac
distribution function:

1
E) =
I ) I 4+ exp —EE;;J

Density of states give us the number of states per volume available at a give energy

In 3D: 9(E) = 4 ( m.;f") VE-E. E>E,

29



Key conclusions E P F L

Non-degenerate semiconductor:

AT EF_E(‘ V4 EU—EF
Nne = N exp A—T Po = Ny exp L—T
Intrinsic semiconductor: ideally pure semiconductor.
Ng = Po = Nyj = A‘rcj\"r v €XP —+ Eg
2T

In non-degenerate semiconductor n,p, NoPo = n?

30
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Appendix — Supplementary Material



Crystallographic Notation E PF L

Miller Indices: Notation Interpretation
(hkl) crystal plane
_’ {thkl} equivalent planes
; [h k] crystal direction
<hkl> equivalent directions
// ,/71 h: inverse x-intercept of plane
_'f_T,‘Ef__ oy ., kiinverse y-intercept of plane
el et I: inverse z-intercept of plane
o T (Intercept values are in multiples of the lattice constant;

h, k and | are reduced to 3 integers having the same ratio.)

Sample direction vectors and their corresponding Miller indices.

** Wurtzite materials have an hexagonal crystal structure:
4 Miller indices are used to represent it more easily (see appendix for more information)



Crystallographic Notation E PF L
Real space or direct space (represented by Miller indices)

(001)

* (100) (110) (111)

Reciprocal space is also called Fourier space, k- space, or momentum space

bxece The reciprocal lattice plays a fundamental role in most analytic studies
a*=2g——
- a-bxe (properties related to momentum) of periodic structures:
b =21 cxXa * Energy-momentum relationship
" ""a-bxe * Theory of diffraction: X-Ray diffraction
=2 axb This is not covered in this course (solid-state physics classes will cover
a-bxc this in details)

Reciprocal lattice vector:

G = ha* +kb* +Ic* for which: G-R = 27 x Integer 33



Crystallographic Notation E PF L

Reciprocal space is also called Fourier space, k- space, or momentum space

For instance, X-ray diffraction reveals the reciprocal space

Interesting video: https://www.youtube.com/watch?v=DFFU39A3fPY

34



Electronic structure of semiconductors E PFL

Electron statistics

Approximation 1 —
0.9 \ Fermi
W Dirac |
0.8 N\
1 \\ ‘ Maxwell-Boltzmann
' 0.7 X |4
f (E ) = ‘.\ .
E_EF 9 06 \ 1
1 + exp =77 £ A
o 05 v
! |
w04 Maxwell-Bolzmann 1|\
- 1 v
0.3 \ \
02 “ \\
0.1 3 %
-10 -8 -6 4 <9 0 2 4 6 8 10
e Maxwell-Boltzmann approximation: {F-Exl/T (05 Unikis)
For F — Er > kT
E—FEp
E) ~exp—
J(E) = exp——
For £ — Ep < KT
K — Ep
Ejee 1 —ex
f(E) exp —
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