

Génie Electrique et Electronique Master program Prof. Elison Matioli

EE-557 Semiconductor devices I

Doping and carrier concentration

Outline of the lecture

- 1. Carrier concentration
- 2. Determining Fermi level

Read Chapter 2 of the reference book (on moodle)

References:

J. A. del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/)

Crystal structure: Definitions

EPFL

(g)

Unit cell: Defines the symmetry and structure of the entire lattice

Bravais lattices: describe the geometric arrangement of the lattice points

a is the lattice constant.

Crystal structure and symmetry play a critical role in determining many physical properties, such as:

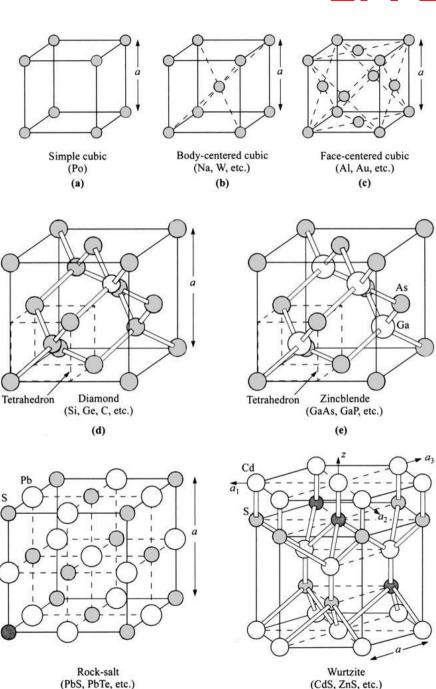
- Cleavage:
 Check out this video:
 https://www.youtube.com/watch?v=IRoIXjxIcBQ
- Mechanical properties (elastic compliance, stiffness)
- Electronic band structure: Band gap
- Optical transparency
- Thermal properties
- Polarization fields

GaN: most common in wurtzite structure

Zincblende structure: III-V compound semiconductors:

GaAs, GaP, etc:

Important for optoelectronics and high-speed Ics



(f)

How Energy Bands and Energy Gap are calculated?

Energy-momentum relationship: characterizes the band structure

Important for the interactions with photons and phonons

Schrödinger's equation:
$$\left[-\frac{\hbar^2}{2m^*}\nabla^2 + V(r)\right]\psi(r, k) = E(k)\psi(r, k)$$

Bloch function $\psi(\mathbf{r}, \mathbf{k}) = \exp(j\mathbf{k} \cdot \mathbf{r})U_b(\mathbf{r}, \mathbf{k})$

 $\psi(\mathbf{r},\mathbf{k})$ and $U_h(\mathbf{r},\mathbf{k})$ are periodic in R in real space

Thus:

$$\psi(\mathbf{r} + \mathbf{R}, \mathbf{k}) = \exp[j\mathbf{k} \cdot (\mathbf{r} + \mathbf{R})] U_b(\mathbf{r} + \mathbf{R}, \mathbf{k})$$
$$= \exp(j\mathbf{k} \cdot \mathbf{r}) \exp(j\mathbf{k} \cdot \mathbf{R}) U_b(\mathbf{r}, \mathbf{k})$$

 $\mathbf{k} \cdot \mathbf{R}$ is a multiple of 2π .

How Energy Bands and Energy Gap are calculated?

In 1D – simple case

Consequences:

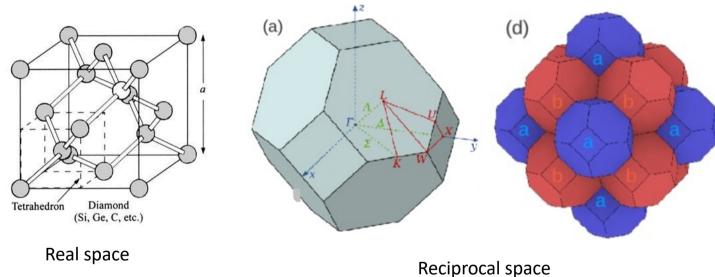
- In 1D: only $k = 2\pi/L$ are allowed (where α is the real space period)
- E(k) is periodic in k-space: E(k) = E(k+G)
- It is sufficient to define k in a primitive cell, which is defined by the Brillouin zone: π/a , π/a
- Entire band structures need only to be calculated within the brillouin zone.

Crystallographic Notation

In 3D - Reciprocal space

Defines the principal symmetry points:

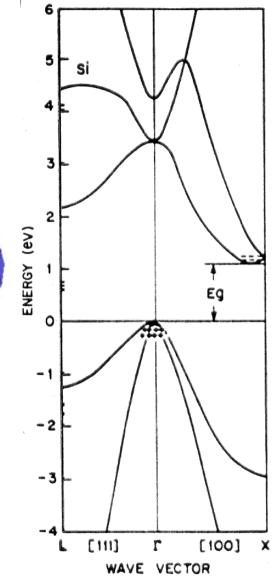
Gamma = (0; 0; 0) is the origin X = (1; 0; 0) + 6 equivalent points, L = (1; 1; 1) + 8 equivalent points



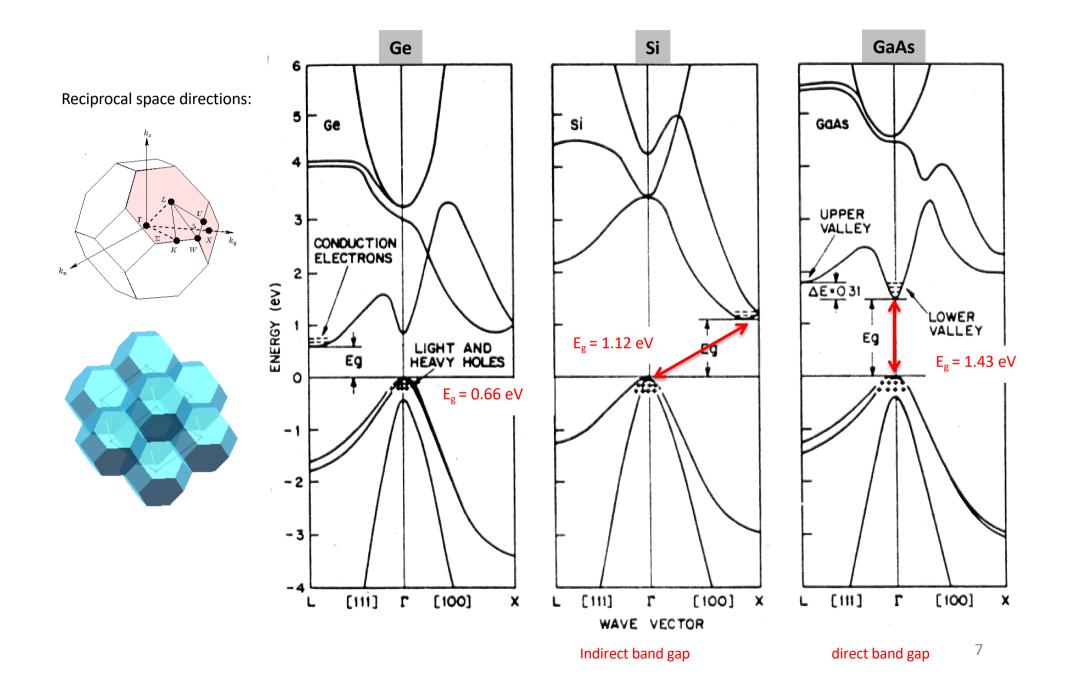
Fundamental to define the band structure of a semiconductor

The reciprocal lattice plays a fundamental role in most analytic studies (properties related to momentum) of periodic structures:

- Energy-momentum relationship
- Theory of diffraction: X-Ray diffraction



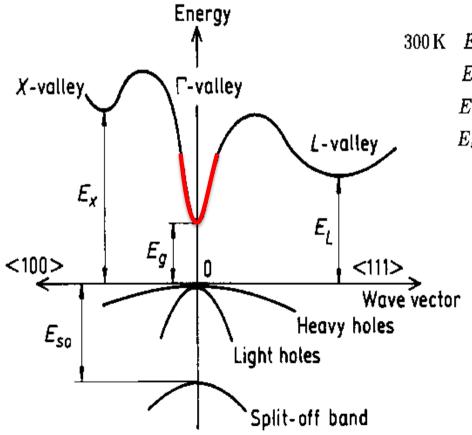
Energy band-gap



What do we learn from band diagrams

Band diagram: We focus on minimum of the bands (quadratic region)

GaAs



$$300 \,\mathrm{K}$$
 $E_g = 1.42 \,\mathrm{eV}$

$$E_L = 1.71 \text{ eV}$$

$$E_X = 1.90 \text{ eV}$$

$$E_{so} = 0.34 \text{ eV}$$

What do we learn from it:

Energy-momentum relationship near band edges

- 1. Allowed and forbidden states
- 2. Group velocity: slope of the bands
- 3. Electron/hole mass: curvature of bands

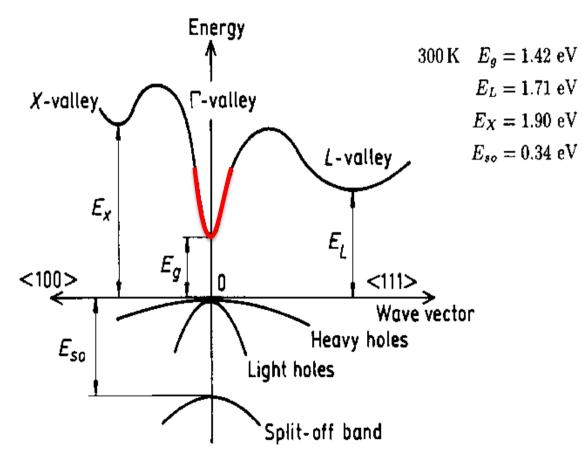
What do we learn from band diagrams

EPFL

Effective mass

Band diagram: We focus on minimum of the bands (quadratic region)

GaAs



Energy-momentum relationship near band edges

$$E(k) = \frac{p^2}{2m^*} = \frac{\hbar^2 k^2}{2m^*}$$

Effective mass in 1D

$$\boldsymbol{m}_{j}^{*} = \hbar^{2} \left(\frac{\partial^{2} E_{j}}{\partial k_{y}^{2}} \right)^{-1}$$

 $\hbar = h/2\pi$: planck's constant = 6.58 eV.s

For example:

Si:
$$m^* = 1.09 m_0$$

GaN:
$$m^* = 0.2 m_0$$

GaAs:
$$m^* = 0.06 m_0$$

Group velocity:

$$v_n(k) = \frac{1}{\hbar} \nabla_k E_n(k)$$

$$v_n(k) = \frac{\hbar k}{m^*} = \frac{p}{m^*}$$

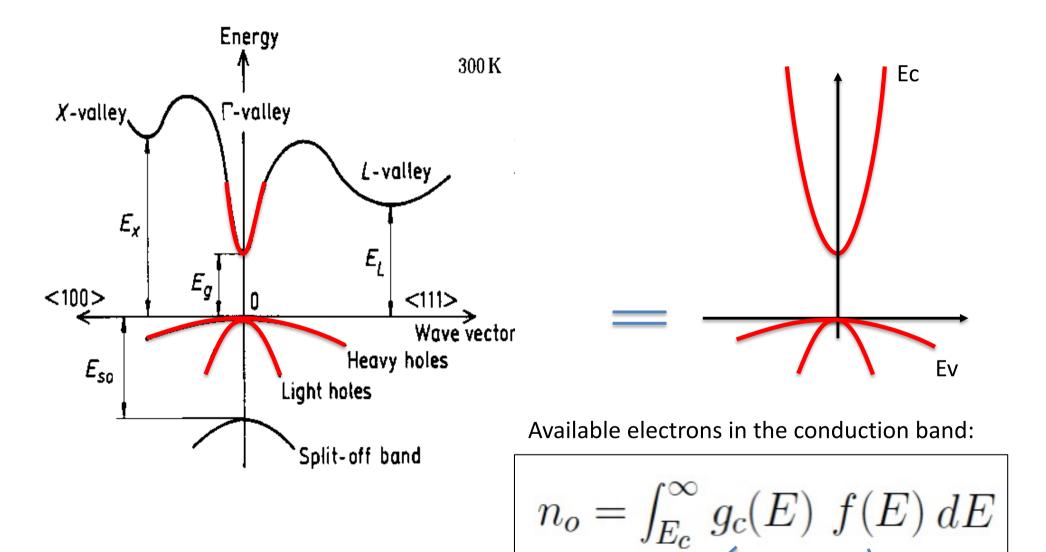
$$p = \hbar k$$

Key questions

- How many carriers are available for conduction?
- How can we increase and control the conductivity in semiconductors?

How many carriers are available for conduction?

We are interested in analyzing the minimum of the conduction and valence bands



density of electrons Probability of occupation

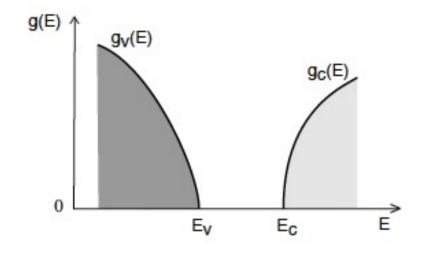
What is the density of electrons $g_c(E)$?

What law regulates the electron occupation of states f(E) as a function of energy and temperature?

$$n_o = \int_{E_c}^{\infty} g_c(E) \ f(E) \ dE$$

EPFL

Density of states



$$g_c(E) = 4\pi \left(\frac{2m_{de}^*}{h^2}\right)^{3/2} \sqrt{E - E_c} \qquad E \ge E_c$$

$$g_v(E) = 4\pi \left(\frac{2m_{dh}^*}{h^2}\right)^{3/2} \sqrt{E_v - E} \qquad E \le E_v$$

 $m_{de}^* \equiv$ density of states electron effective mass $m_{dh}^* \equiv$ density of states hole effective mass

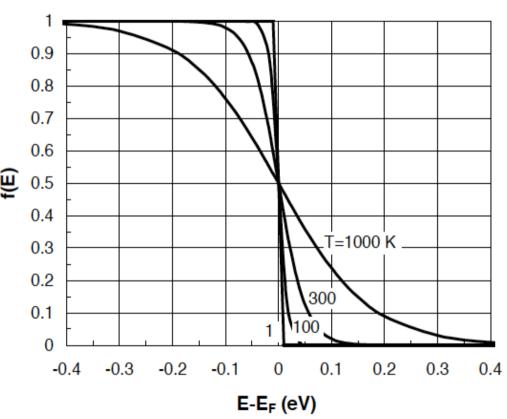
EPFL

Density of states

Electron statistics

At finite temperature, state occupation probability by electron determined by **Fermi-Dirac distribution function**:

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$



 E_F : Fermi energy -energy for which occupation probability is 50%

k: Boltzmann constant = 8.62x 10⁻⁵ eV/K

kT-thermal energy = 25.9meV at 300 K

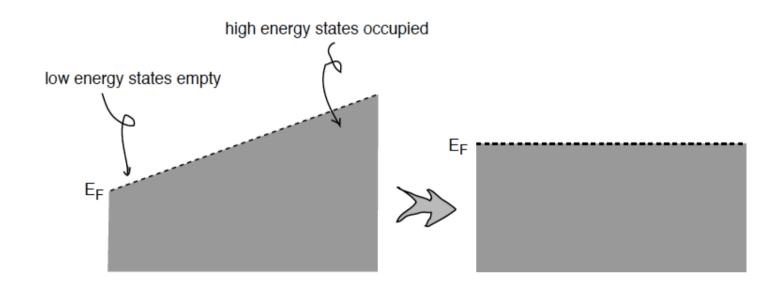
Notion of thermal equilibrium

A particle system is in thermal equilibrium (TE) if:

- it is closed: no energy flows through boundaries of system
- it is in steady-state: time derivatives of all ensemble averages (global and local) are zero

Thermal equilibrium important because all systems evolve towards TE after having been perturbed.

In thermal equilibrium, E_F constant throughout system



How to calculate the carrier concentration? (which is related to the current)

Density of states

$$g_c(E) = 4\pi \left(\frac{2m_{de}^*}{h^2}\right)^{3/2} \sqrt{E - E_c} \qquad E \ge E_c$$

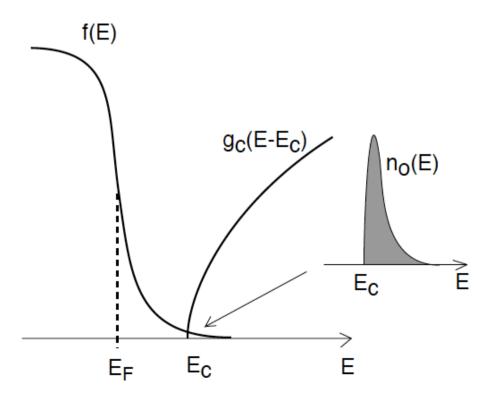
$$m_{de} = (m_1^* m_2^* m_3^*)^{1/3}$$

Probability of a state to be occupied

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

Integrated for all energies

$$n_o = \int_{E_c}^{\infty} g_c(E) \ f(E) \ dE$$



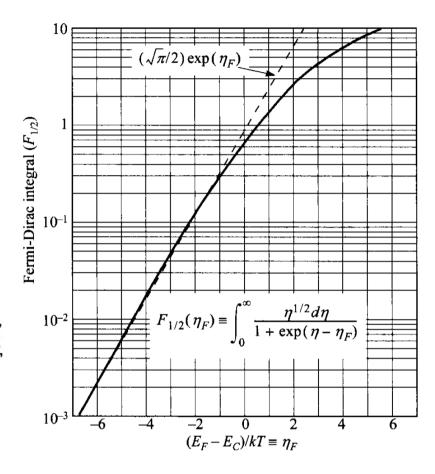
Questions

- 1. What is a simplified expression for the number of electrons n and holes p?
- 2. What is the position of the Fermi level?
- 3. What is the np product?

$$n = N_C \frac{2}{\sqrt{\pi}} F_{1/2} \left(\frac{E_F - E_C}{kT} \right)$$

where
$$N_C = 2\left(\frac{2\pi m_{de}kT}{h^2}\right)^{3/2}$$

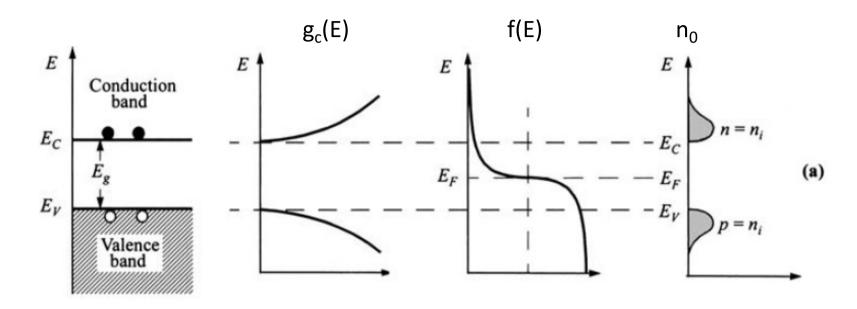
$$F_{1/2}\left(\frac{E_F - E_C}{kT}\right) = \int_{1/2}^{\infty} \frac{[(E - E_C)/kT]^{1/2}}{1 + \exp[(E - E_F)/kT]} \frac{dE}{kT}$$
$$= \int_0^{\infty} \frac{\eta^{1/2}}{1 + \exp(\eta - \eta_F)} d\eta$$



Non-degenerate Semiconductors. By definition, in non-degenerate semiconductors, the doping concentrations are smaller than Nc and the **Fermi levels are more than several kT below Ec**, the Fermi-Dirac integral approaches:

$$F_{1/2}\left(\frac{E_F - E_C}{kT}\right) = \frac{\sqrt{\pi}}{2} \exp\left(-\frac{E_C - E_F}{kT}\right)$$

Intrinsic semiconductor (undoped)



 $n_o \equiv$ equilibrium (free) electron concentration in conduction band [cm⁻³] $p_o \equiv$ equilibrium hole concentration in valence band [cm⁻³]

In intrinsic semiconductors:

$$\mathbf{n_o} = \mathbf{p_o} = \mathbf{ni}$$
 $\mathbf{n_i} \equiv \text{intrinsic carrier concentration [cm}^{-3}]$

Intrinsic semiconductor (undoped)

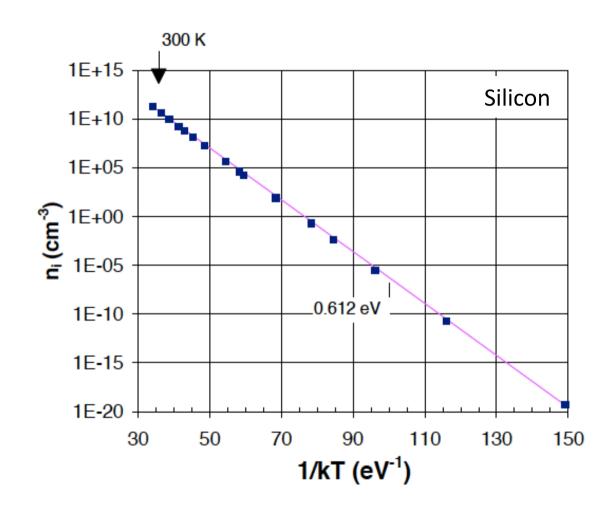
First important result:

$$\mathbf{n_o} = \mathbf{p_o} = \mathbf{ni}$$

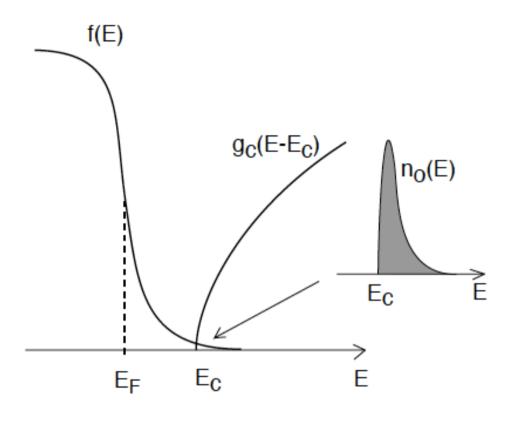
 $\mathbf{n_i} = \text{intrinsic carrier concentration [cm}^{-3}]$

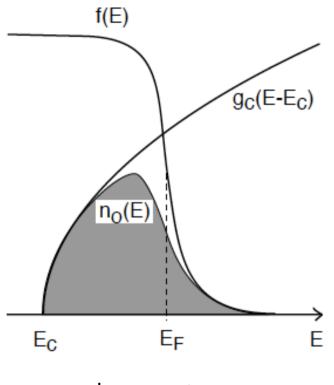
A second important result:

$$n_o p_o = n_i^2$$



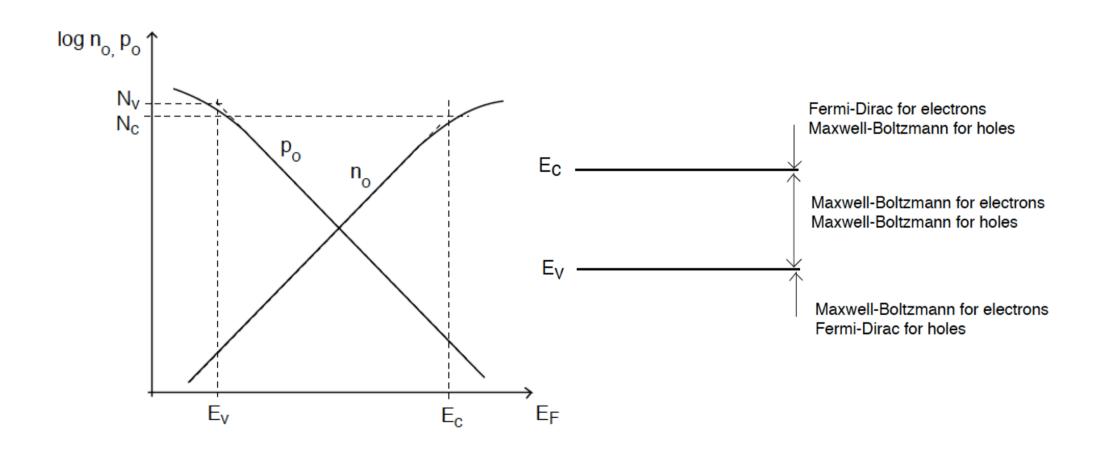
Equilibrium *np* **product** in a semiconductor at a certain temperature is a **constant specific to the semiconductor**.



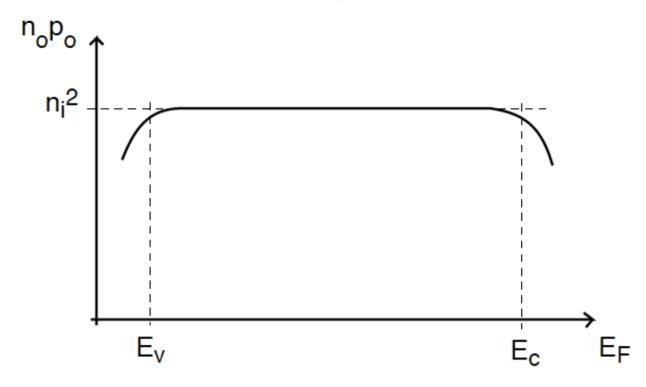


degenerate

Summary of carrier statistics depending on E_F location



Summary of carrier statistics depending on E_F location



If E_F is inside bandgap:

$$n_o p_o \simeq N_c N_v \exp{-\frac{E_g}{kT}}$$

For a given semiconductor, n_op_o depends only on T and is independent of precise location of EF . But only if semiconductor is non-degenerate.

In intrinsic semiconductor, $n_o = p_o$ and usually fairly small \Rightarrow semiconductor non-degenerate.

$$n_i = \sqrt{n_o p_o} = \sqrt{N_c N_v} \exp{-\frac{E_g}{2kT}}$$

Key conclusions

In solids, electron states cluster in bands separated by bandgaps.

Band structure:

- Depends on the atomic and crystal structure
- Dependent on the momentum of electrons
- Band gaps can be direct or indirect

E(k) is periodic in **k-space**: E(k) = E(k+G)

Entire band structures need only to be calculated within the brillouin zone.

Order of magnitude of key parameters:

– Atomic density of Si: $n \sim 5 \times 10^{22} \, \mathrm{cm}^{-3}$

- Bandgaps at 300K Si: $E_g = 1.12 \text{ eV}$

GaAs: $E_g = 1.43 \text{ eV}$

GaN: $E_g = 3.39 \text{ eV}$

thermal energy: kT ~26 meV @300K

Key conclusions

Distinct feature of semiconductors: at 0 K, quantum state filling ends up with full band separated from next empty band by ~1-3eV bandgap at around 300 K, some electrons populate next band above bandgap.

System in thermal equilibrium:

- isolated from outside world and in steady state.
- In thermal equilibrium, E_F is independent of position: it is constant!

Occupation probability of quantum systems in thermal equilibrium governed by Fermi-Dirac distribution function:

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

Density of states give us the number of states per volume available at a give energy

In 3D:
$$g_c(E) = 4\pi \left(\frac{2m_{de}^*}{h^2}\right)^{3/2} \sqrt{E - E_c} \qquad E \ge E_c$$

$$g_v(E) = 4\pi \left(\frac{2m_{dh}^*}{h^2}\right)^{3/2} \sqrt{E_v - E}$$
 $E \le E_v$

Key conclusions

Non-degenerate semiconductor:

$$n_o = N_c \exp \frac{E_F - E_c}{kT}, \qquad p_o = N_v \exp \frac{E_v - E_F}{kT}$$

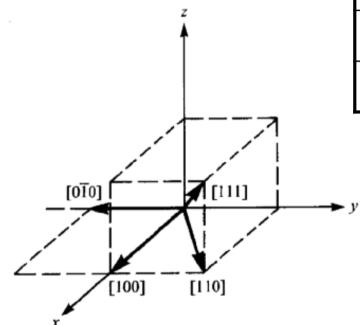
Intrinsic semiconductor: ideally pure semiconductor.

$$n_o = p_o = n_i = \sqrt{N_c N_v} \exp{-\frac{E_g}{2kT}}$$

In non-degenerate semiconductor
$$n_o p_o \qquad n_o p_o = n_i^2$$

Appendix – Supplementary Material

Miller Indices:



Notation	Interpretation
(hkl)	crystal plane
$\{hkl\}$	equivalent planes
[hkl]	crystal direction
$\langle h k l \rangle$	equivalent directions

h: inverse x-intercept of plane

k: inverse y-intercept of plane

l: inverse *z*-intercept of plane

(Intercept values are in multiples of the lattice constant; h, k and l are reduced to 3 integers having the same ratio.)

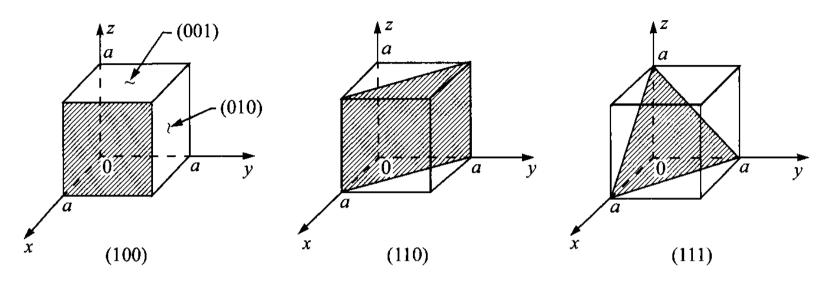
Sample direction vectors and their corresponding Miller indices.

4 Miller indices are used to represent it more easily (see appendix for more information)

^{**} Wurtzite materials have an hexagonal crystal structure:

Crystallographic Notation

Real space or direct space (represented by Miller indices)



Reciprocal space is also called Fourier space, k- space, or momentum space

$$a^* \equiv 2\pi \frac{b \times c}{a \cdot b \times c}$$

$$b^* \equiv 2\pi \frac{c \times a}{a \cdot b \times c}$$

$$c^* \equiv 2\pi \frac{a \times b}{a \cdot b \times c}$$

The reciprocal lattice plays a fundamental role in most analytic studies (properties related to momentum) of periodic structures:

- Energy-momentum relationship
- Theory of diffraction: X-Ray diffraction

This is not covered in this course (solid-state physics classes will cover this in details)

Reciprocal lattice vector:

Crystallographic Notation

Reciprocal space is also called Fourier space, k- space, or momentum space

For instance, X-ray diffraction reveals the reciprocal space

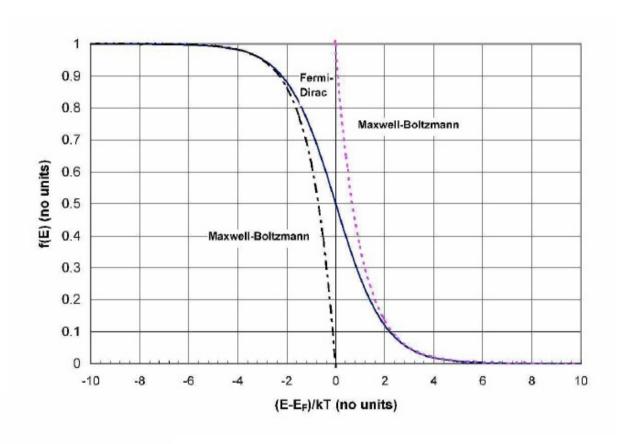
Interesting video: https://www.youtube.com/watch?v=DFFU39A3fPY

Electronic structure of semiconductors

Electron statistics

Approximation

$$f(E) = \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$



• Maxwell-Boltzmann approximation:

For
$$E - E_F \gg kT$$
:

$$f(E) \simeq \exp{-\frac{E - E_F}{kT}}$$

For
$$E - E_F \ll kT$$
:

$$f(E) \simeq 1 - \exp\frac{E - E_F}{kT}$$